The influence of vesicle size and composition on alpha-synuclein structure and stability.
نویسندگان
چکیده
Monomeric alpha-synuclein (alphaSN), which has no persistent structure in aqueous solution, is known to bind to anionic lipids with a resulting increase in alpha-helix structure. Here we show that at physiological pH and ionic strength, alphaSN incubated with different anionic lipid vesicles undergoes a marked increase in alpha-helical content at a temperature dictated either by the temperature of the lipid phase transition, or (in 1,2-DilauroylSN-Glycero-3-[Phospho-rac-(1-glycerol)] (DLPG), which is fluid down to 0 degrees C) by an intrinsic cold denaturation that occurs around 10-20 degrees C. This structure is subsequently lost in a thermal transition around 60 degrees C. Remarkably, this phenomenon is only observed for vesicles >100 nm in diameter and is sensitive to lipid chain length, longer chain lengths, and larger vesicles giving more cooperative unfolding transitions and a greater degree of structure. For both vesicle size and chain length, a higher degree of compressibility or permeability in the lipid thermal transition region is associated with a higher degree of alphaSN folding. Furthermore, the degree of structural change is strongly reduced by an increase in ionic strength or a decrease in the amount of anionic lipid. A simple binding-and-folding model that includes the lipid phase transition, exclusive binding of alphaSN to the liquid disordered phase, the thermodynamics of unfolding, and the electrostatics of binding of alphaSN to lipids is able to reproduce the two thermal transitions as well as the effect of ionic strength and anionic lipid. Thus the nature of alphaSN's binding to phospholipid membranes is intimately tied to the lipids' physico-chemical properties.
منابع مشابه
Clioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملAlpha-synuclein induced apoptosis and proliferation interacted with CD44 in human lymphocytes
Human ?-synuclein is a 140 amino acid protein with little or no secondary structure. The ?-synuclein is expressed at high levels in the brain and enriched in neural synaptic terminals but its physiological function remains largely unknown. More recently, ?-synuclein has been shown to be one of the principal componets of Lewy bodies, neuronal inclusions that are found in diverse human neurodegen...
متن کاملAlpha-synuclein induced apoptosis and proliferation interacted with CD44 in human lymphocytes
Human ?-synuclein is a 140 amino acid protein with little or no secondary structure. The ?-synuclein is expressed at high levels in the brain and enriched in neural synaptic terminals but its physiological function remains largely unknown. More recently, ?-synuclein has been shown to be one of the principal componets of Lewy bodies, neuronal inclusions that are found in diverse human neurodegen...
متن کاملInhibitory Effect of Scutellaria pinnatifida Extracts on the Alpha Synuclein Cytotoxicity
Background: Many of neurodegenerative diseases (NDs) are associated with formation of the protein aggregates called amyloidal fibrils. Fibrillization of alpha-synuclein seems to be a key stage in the creation and progression of NDs and finding the compounds that inhibit the toxicity of alpha-synuclein aggregates seems to be one of the most attention subjects in the neurodegenerative studies. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 96 7 شماره
صفحات -
تاریخ انتشار 2009